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ABSTRACT
Tags are user-generated labels for entities. Existing research
on tag recommendation either focuses on improving its ac-
curacy or on automating the process, while ignoring the ef-
ficiency issue. We propose a highly-automated novel frame-
work for real-time tag recommendation. The tagged training
documents are treated as triplets of (words, docs, tags), and
represented in two bipartite graphs, which are partitioned
into clusters by Spectral Recursive Embedding (SRE). Tags
in each topical cluster are ranked by our novel ranking al-
gorithm. A two-way Poisson Mixture Model (PMM) is pro-
posed to model the document distribution into mixture com-
ponents within each cluster and aggregate words into word
clusters simultaneously. A new document is classified by
the mixture model based on its posterior probabilities so
that tags are recommended according to their ranks. Ex-
periments on large-scale tagging datasets of scientific docu-
ments (CiteULike) and web pages (del.icio.us) indicate that
our framework is capable of making tag recommendation ef-
ficiently and effectively. The average tagging time for testing
a document is around 1 second, with over 88% test docu-
ments correctly labeled with the top nine tags we suggested.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—algorithms; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Tagging usually refers to the action of associating a rel-

evant keyword or phrase with an entity (e.g. document,
image, or video). With the recent proliferation of Web 2.0
applications such as Del.icio.us1 and Flickr2, tagging ser-
vices have become popular and have drawn much attention
in both academia and industry. Existing research on tagging
services includes improving the quality of searching and rec-
ommendation in the tag space [2], analyzing the usage pat-
terns of tagging systems [11], and automating the process of
tag assignment [4].

Here, we address the problem of automatic tag recom-
mendation for document search engines and digital libraries,
which bears some similarities to that of query recommenda-
tion [1]. However, our problem space is arguably larger,
because relevant candidate tags may not even appear in the
document, while candidate queries are most likely bounded
in the document term space in keyword-based search.

While automatic tag recommendation is an actively pur-
sued research topic, to the best of our knowledge, we are
the first to study in depth the problem of automatic and
real-time tag recommendation, and propose a solution with
promising performance when evaluated on two real-world
tagging datasets, i.e., CiteULike3 for scientific documents
and del.icio.us for web pages.

Specifically, we advocate a two-state framework. First,
the relationship among documents, tags, and words are rep-
resented in two bipartite graphs. During the offline learning
stage, we use the Lanczos algorithm for symmetric low rank
approximation for the weighted adjacency matrix for the bi-
partite graphs, and Spectral Recursive Embedding (SRE) to
symmetrically partition the graphs into multi-class clusters.
We propose a novel node ranking algorithm to rank nodes
(tags) within each cluster, and then apply a Poisson mixture
model to learn the document distributions for each class.

During the online recommendation stage, given a docu-
ment vector, its posterior probabilities of classes are first
calculated. Then based on the joint probabilities of the tags
and the document, tags are recommended for this document
based on their within-cluster ranking. The efficiency of the
Poisson mixture model lets our model make recommenda-
tions in linear-time in practice. As an example, using reason-

1http://del.icio.us/
2http://www.flickr.com/
3http://www.citeulike.org/



able resources, the average tagging time for a test document
is only 1.1 seconds.

It should be noted that tag suggestion is still a compli-
cated problem that can be addresses in many aspects. e.g.,
examine the tag growth and reuse by user study [8]. In this
paper, we address this issue from a machine learning per-
spective by analyzing the content of tags. We believe this
approach could be a useful component that can be com-
bined with other powerful tools to boost the performance of
real-world tagging systems.

The rest of the paper is organized as follows. We briefly
review the related work in Section 2. Section 3 introduces
bipartite graphs, the Lanczos algorithm, and the graph par-
titioning algorithm as well as the node ranking method. Sec-
tion 4 presents the mixture model for document classifica-
tion and a online tag recommendation algorithm. Section 5
presents the experimental results on two data sets. Section
6 concludes our work.

2. RELATED WORK
Bipartite Graph Partitioning: A bipartite graph con-

sists of two disjoint sets of vertices X and Y such that no
edge has both end points in the same set. The general graph
partitioning problem is NP hard so that for bipartite graphs,
partitioning is optimized by minimizing a global function.
Many clustering algorithms have been proposed to partition
bipartite graphs. The Min-Max Cut algorithm minimizes
between-cluster sum of weights and maximizes the within-
cluster sum of weights [6]. The spectral clustering simulta-
neously clusters rows and columns of adjacency matrix of the
graph [5]. However, as pointed out in [10], spectral cluster-
ing may fail in certain cases where two bipartite graphs are
merged to be one tripartite graph due to the heterogeneous
nature of the vertices. To address this problem, the algo-
rithm, Consistent Bipartite Graph Co-partitioning (CBGC),
is proposed [10]. CBGC applies semi-definite programming
(SDP) to deal with star-structured high order heterogeneous
data by representing them as several bipartite graphs, and
optimizes a global function to find the best cut. However,
CBGC only deals with binary clustering problems and is
thus not suitable for multi-clustering tasks.

Low Rank Matrix Approximation: Low rank matrix
approximation is the problem of approximating a m×n ma-
trix A by another rank k matrix, where k is smaller than
m and n. Traditional methods like Singular Value Decom-
position (SVD) can be used to find such matrix but the
computation time is usually too long (O(min{mn2, nm2})).

Recently, near-optimal low rank matrix approximation meth-
ods have become increasing popularity. If we denote Ak as
an optimal rank k approximation of matrix A, the goal is to
find a near-optimal matrix A∗

k that minimizes the error ǫ:

‖A − A∗

k‖ ≤ ‖A − Ak‖ + ǫ (1)

CUR [7] decomposition is one such algorithm that approx-
imates A by A = CUR, where C is a matrix consisting of a
small number of columns of A, R is a matrix consisting of a
small number of rows of A, and U is an appropriately-defined
low-dimensional encoding matrix. Thus, a CUR matrix de-
composition provides a dimensionally-reduced low-rank ap-
proximation to the original data matrix A that is expressed
in terms of a small number of actual columns and rows of the
original matrix. Both linear and constant time CUR algo-
rithms have been proposed to efficiently approximate large

sparse matrices. However, since the rows and columns are
picked randomly, CUR can not guarantee the symmetry of
a matrix, which makes it not suitable for bipartite graphs
since the weight matrices are always symmetric.

3. BIPARTITE GRAPH REPRESENTATION
We define a graph G = (V, E, W ) as a set of vertices

V and their corresponding edges E, with W denoting the
weight of edges. e.g., wij denotes the weight of the edge
between vertices i and j.

A graph G is bipartite if it contains two vertex classes
X and Y such that V = X ∪ Y and X ∩ Y = ∅, each edge
eij ∈ E has one endpoint (i) in X and the other endpoint (j)
in Y . In practice, X and Y usually refer to different types
of objects and E represents the relationship between them.
In the context of document representation, X represents a
set of documents while Y represents a set of terms, and wij

denotes the number of times term j appears in document i.
Note that the weighted adjacency matrix W for a bipartite
graph is always symmetric.For example, Figure 1 depicts an
undirected bipartite graph with 4 documents and 5 terms.

Figure 1: A bipartite graph of X (documents) and
Y (terms).

3.1 Normalization and Approximation
Normalization is usually performed first for the weight

matrix W to eliminate the bias. The most straightforward
way to normalize W is row normalization, which does not
take into account the symmetry of W . However, to consider
the symmetry of W , we propose to use normalized graph
Laplacian to approximate W . The normalized Laplacian
L(W ) is defined as:

L(W )ij =

8

>

<

>

:

1 − wij

di
if i = j,

− wij√
didj

if i and j are adjacent,

0 otherwise,

where di is the out degree of vertex i, i.e., di =
P

wij ,∀j ∈
V . We can then define a diagonal matrix D where Dii = di.
Therefore, the normalized Laplacian can be represented as

L(W ) = D(−1/2)WD(−1/2). (2)

For large-scale datasets such as the Web corpora and im-
age collections, their feature space usually consists of mil-
lions of vectors of very high dimensions (e.g., x = 106, y =
107). Therefore, it is often desirable to find a low rank ma-

trix W̃ to approximate L(W ) in order to lower the com-
putation cost, to extract correlations, and remove noise.
Traditional matrix decomposition methods, e.g., Singular
Value Decomposition (SVD) and eigenvalue decomposition



(when the matrix is symmetric), require superlinear time for
matrix-vector multiplication so they usually do not scale to
real-world applications.

For symmetric low rank approximation, we use the Lanc-
zos algorithm [12] which iteratively finds the eigenvalues and
eigenvector of square matrices. Given an n × n sparse sym-
metric matrix A with eigenvalues:

λ1 ≥ ... ≥ λn > 0, (3)

the Lanczos algorithm computes a k × k symmetric tridi-
agonal matrix T , whose eigenvalues approximate the eigen-
values of A, and the eigenvectors of T can be used as the
approximations of A’s eigenvectors, with k much smaller
than n. In other words, T satisfies:

‖A − T‖F ≤ ǫ‖A‖F , (4)

where ‖ · ‖F denotes the Frobenius norm, with ǫ as a con-
trolled variable. For example, to capture 95% variances of
A, ǫ is set to 0.05.

3.2 Bipartite Graph Partitioning
For multi-clustering on bipartite graphs, we apply the

Spectral Recursive Embedding (SRE) algorithm [16]. SRE
essentially constructs partitions by minimizing a normalized
sum of edge weights between unmatched pairs of vertices,
i.e., minΠ(A,B) Ncut(A, B), where A and B are matched
pairs in one partition with Ac and Bc being the other. The
normalized variant of edge cut Ncut(A, B) is defined as:

Ncut(A, B) =
cut(A, B)

W (A,Y ) + W (X,B)
+

cut(Ac, Bc)

W (Ac, Y ) + W (X, Bc)
,

(5)
where

cut(A, B) = W (A,Bc) + W (Ac, B)

=
X

i∈A,j∈Bc

wij +
X

i∈Ac,j∈B

wij . (6)

The rationale of Ncut is not only to find a partition with
a small edge cut, but also partitions that are as dense as
possible. This is useful for our application of tagging doc-
uments, where the documents in each partition are ideally
focused on one specific topic. As a result, the denser a par-
tition is, the better that relevant documents and tags are
grouped together.

3.3 Within Cluster Node Ranking
We define two new metrics N-Precision and N-Recall for

node ranking. N-Precision of a node i is the weighted sum of
its edges that connect to the nodes within the same cluster,
divided by the total sum of edge weights in that cluster.
Denote the cluster label of i as C(i),

npi =

Pn
j=1 wijI[C(j) = C(i)]

Pn
j,k=1 wjkI[C(j) = C(k) = C(i)]

, j, k 6= i. (7)

For the unweighted graph, the above equation equals to
the number of edges associated with node i in cluster C(i),
divided by the total number of edges in cluster C(i). Gen-
erally, N-precision measures the importance of a node to
the cluster, in comparison with other nodes. In the context
of text documents, the cluster is a topic set of documents
and the weight of the word nodes shows the frequency of

the words appearing in that topic. With the cluster deter-
mined, the denominator of equation (7) is constant, so that
the more weight the node has, the more important it is.

In contrast, N-recall is used to quantify the posterior prob-
ability of a node i to a given cluster and is the inverse frac-
tion of i’s edge associated with its cluster

nri =
|Ei|

Pn
j=1 I[C(j) = C(i)]

. (8)

It is evident that N-Recall is always no less than 1. The
larger N-Recall is, the more probable that a word is associ-
ated with a specific topic.

Given npi and nri, we can estimate the ranking of i:

Ranki =

8

>

<

>

:

exp

„

− 1

r(i)2

«

r(i) 6= 0,

0 r(i) = 0,

where r(i) = (npi) ∗ log(nri). (9)

Depicted in Figure 2, our ranking function is a smoothed
surrogate that is proportional to both node precision and
recall, guaranteed to be in the range of (0, 1).
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Figure 2: Smoothed Ranking Function.

Potential applications of the aforementioned bipartite graph
node ranking methodology include interpreting the document-
author relationship. i.e., determine the social relations (e.g.,
“hub” and “authority”) of authors in the same research
topic, and finding the most representative documents in the
topic. In what follows, we apply this framework to tag rec-
ommendation by ranking nodes that represent tags in each
cluster.

4. ONLINE TAG RECOMMENDATION
A typical document of concern here consists of a set of

words and several tags annotated by users. The relationship
among documents, words, and tags can then be represented
by two bipartite graphs as shown in Figure 3.

The weighted graph can be written as

W =

0

B

@

0 A 0

AT 0 B

0 BT 0

1

C

A
, (10)

where A and B denote the inter-relationship matrices be-
tween tags and docs, docs and words, respectively.



Figure 3: Two bipartite graphs of documents, words
and tags.

Given the matrix representation, a straightforward ap-
proach to recommend tags is to consider the similarity (e.g.,
cosine similarity) between the query document and training
documents by their word features, then suggest the top-
ranked tags from most similar documents. This approach
is usually referred to as collaborative filtering [3]. Never-
theless, this approach is not efficient for real-world scenar-
ios. To take the advantage of the proposed node ranking
algorithm, we propose a Poisson mixture model that can ef-
ficiently determine the membership of a sample as well as
clustering words with similar meanings.

Before presenting the mixture model, we first summarize
our framework of tag recommendation in Algorithm 1.

Algorithm 1 Online Tag Recommendation

1: Input (D, S, T ), K, M, L
Document collection: D = {D1, ...,Dm}
Word vocabulary: S = {S1, ..., Sk}
Tag vocabulary: T = {T1, ..., Tn}
Number of clusters: K ∈ R

Number of components: M ∈ R

Number of word clusters: L ∈ R

Offline Computation

2: Represent the weighted adjacency matrix W as in eq. (10)
3: Normalize W using the normalized Laplacian

L(W ) = D(−1/2)WD(−1/2) (eq. (2))
4: Compute a low rank approximation matrix using the Lanczos:

W̃ ≃ L(W ) = QkTkQT
k

5: Partition W̃ into K clusters using SRE [16],

W̃ = {W̃1, ..., W̃K}
6: Assign labels to each document Dj , j ∈ {1, ...m}

C(Dj) ∈ {1, ...,K}
7: Compute the node rank Rank(T ) for each tag Ti,k in cluster

k, i ∈ {1, ..., n}, k{1, ...,K} (eq. (9))

8: Build a Poisson mixture model for (B̃, C(D)) with M com-

ponents and L word clusters, where B̃ denotes the inter-
relationship matrix of documents and words in W̃ (eq. (10))
Online Recommendation

9: For each test document Y, calculate its posterior probabilities
P (C = k|D = Y) in each cluster k, and denote the member-
ship of Y as C(Y) = {c(Y, 1), ..., c(Y, K)} ((eq. (17)))

10: Recommend tags based on the rank of tags, i.e., the joint
probability of tags T and document Y, R(T, Y) (eq. (18))

Intuitively, this two-stage framework can be interpreted
as an unsupervised-supervised learning procedure. During
the offline learning stage, nodes are partitioned into clusters
using an unsupervised learning method, cluster labels are
assigned to document nodes as their “class labels”, and tag
nodes are given ranks in each cluster. A mixture model is
then built based on the distribution of document and word

nodes. In the online recommendation stage, a document is
classified into predefined clusters acquired in the first stage
by naive Bayes so that tags can be recommended in the de-
scending orders of their ranks. To avoid confusion, we will
refer to the clusters determined by the partitioning algo-
rithm in the first stage as classes in the next section.

4.1 Two-way Poisson Mixture Model
We propose to use Poisson mixture models to estimate the

distribution of document vectors, because they fit the data
better than standard Poissons by producing better estimates
of the data variance, and are relatively easy for parameter
estimation. Although it takes time to fit the training data,
it is efficient to predict the class label of new documents
once the model is built. Because of the numerical stability
of this statistical approach, the results are usually reliable.
Since only probabilistic estimation is involved, it is capable
for real-time process.

Nevertheless, traditional unsupervised learning approaches
of mixture models [9] are not always capable of dealing
with document classification. Considering the sparseness
and high-dimensionality of the document-word matrix where
most entries are zeros and ones, the model may fail to pre-
dict the true feature distribution (i.e. the probability mass
function) of different components. As a result, word cluster-
ing is a necessary step before estimating the components in
the model. In what follows, we utilize the two-way Poisson
mixture model [14] in order to simultaneously cluster word
features and classify documents.
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Figure 4: An example of two mixtures of the Poisson
distribution in two clusters.(Top) The histograms of
mixture components. (Bottom) Mixture model clas-
sification results. (a) Three-component mixtures.
(b) Two-component mixtures.

Given a document D = {D1, ..., Dp}, where p is the di-
mension, the distribution of the document vector in each
class can be estimated by using a parametric mixture model.



Let the class label be C = {1, 2, ..., K}, then

P (D = d|C = k) =

M
X

m=1

πmI(F (m) = k)

p
Y

j=1

φ(dj|λj,m),

(11)
where πm is the prior probability of component m, with
PM

m=1 πm = 1. I(F (m) = k) is an indicator function, i.e.,
whether component m belongs to class k, and φ denotes the
probability mass function (pmf) of a Poisson distribution,
φ(dj |λj,m) = e−λj,mλj,m

dj /dj !.
In this way, each class is a mixture model with a multi-

variate distribution having variables that follow a Poisson
distribution. Figure 4 shows the histogram of two mixtures
which can be regarded as the pmfs of two Poisson mixtures.

Our assumption is that within each class, words in dif-
ferent documents have equal Poisson parameters, while for
documents in different classes, words may follow different
Poisson distributions. For simplicity, we also assume that
all classes have the same number of word clusters. De-
note l = {1, , , , L} to be the word clusters, words in the
same word cluster m will have the same parameters, i.e.,
λi,m = λj,m ≡ λ̃l,m, for c(i, k) = c(j, k), where c(i, k) de-
notes the cluster label of word i in class k. Therefore, Equa-
tion (11) can be simplified as follows (with L ≪ p):

P (D = d|C = k) ∝
M
X

m=1

πmI(F (m) = k)

L
Y

l=1

φ(dk,l|λ̃l,m).

(12)

4.1.1 Parameter Estimation
With the classes determined, we apply EM algorithm to

estimate the Poisson parameters λ̃l,m, l ∈ {1, ..., L}, m ∈
{1, ..., M}, the priors of mixture components πm, and the
word cluster index c(k, j) ∈ {1, ..., L}, k ∈ {1, ..., K}, j ∈
{1, ..., p}.

The E-step estimates the posterior probability pi,m:

pi,m ∝ π(t)
m I(C(i))

p
Y

j=1

θ(d(i, j)|λ̃(t)
m,i,j). (13)

The M-step uses pi,m to maximize the objective function

L(π(t+1)
m , λ̃

(t+1)
m,l , c(t+1)(k, j)|π(t)

m , λ̃
(t)
m,l, c

(t)(k, j))

= max
n
X

i=1

M
X

m=1

pi,m log

 

π(t+1)
m I(C(i))

p
Y

j=1

θ(d(i, j)|λ̃(t+1)
m,i,j )

!

,

and update the parameters

π(t+1)
m =

Pn
i=1 pi,m

PM
m′=1

Pn
i=1 pi,m′

, (14)

λ̃(t+1)
m =

Pn
i=1 pi,m

P

j d(i, j)I(C(i))

|d(i, j)|Pn
i=1 pi,m

, (15)

where |d(i, j)| denotes the number of j’s in component l.

Once λ̃
(t+1)
m is fixed, the word cluster index c(t+1)(k, j)

can be found by doing linear search over all components:

c(t+1)(k, j) = arg max
l

n
X

i=1

M
X

m=1

log(d(i, j)|λ̃(t+1)
m,l ). (16)

4.2 Tag Recommendation for New Documents
Normally, the class label C(dt) of a new document dt is

determined by Ĉ(x) = arg maxk P (C = k|D = dt). However
in our case, we determine the mixed membership of a doc-
ument by calculating its posterior probabilities to classes,
with

PK
k=1 P (C = k|D = dt) = 1. Applying equation (12)

and the Bayes rule,

P (C = k|D = dt) =
P (D = dt|C = k)P (C = k)

P (D = dt)

=

PM
m=1 πmI(F (m) = k)

QL
l=1 φ(dk,l|λ̃l,m)P (C = k)

P (D = dt)
, (17)

where P (C = k) are the prior probabilities for class k and
are set uniform. Finally, the probability for each tag Ti, i ∈
{1, ..., n} to be associated with the sample is

R(Ti, dt) = P (T = Ti|D = dt) = RankTi
∗P (C = x|D = dt).

(18)
By ranking the tags in descending order of their probabil-

ities, the top ranked tags are selected for recommendation.

5. EXPERIMENTAL RESULTS
We evaluate our proposal (PMM) by conducting two sets

of experiments in different application contexts: recommend-
ing tags for scientific documents (CiteULike) and web pages
(del.icio.us).

Parameters are tuned before the online step takes place,
i.e., the number of clusters K, the number of components
M , and the number of word clusters L. Due to the space
limitation, we only present the best results here.

For comparison, the Vector Similarity (VS) approach is
used as a baseline, which calculates the cosine similarity be-
tween a query Q and each training document Di, Sim(Q,Di) =

P

i n(Q,j)n(i,j)√
P

j n(Q,j)2
√

P

i n(i,j)2
, where n(i, j) represents the count of

j’s word in sample i. The top t tags from s most simi-
lar documents are then considered. In our experiment, we
set both t and s to be 3, resulting in 9 recommendations for
each query document. To improve performance, we augment
the vector similarity approach by applying information-gain
(VS+IG) to select roughly 5% of the total features.

Meanwhile, we also compare with a recent developed method
named SimFusion [15] which leveraged unified relationship
matrix to iteratively calculate the similarity between ob-
jects. Details are omitted here.

5.1 Evaluation Metrics
In addition to the standard Kendall τ rank correlation

metric [13] that measures the degree of correspondence be-
tween two ranked lists, we also propose the following metrics
to measure the effectiveness of our algorithm.

• Top-k accuracy: Percentage of documents correctly an-
notated by at least one of the top kth returned tags.

• Exact-k accuracy: Percentage of documents correctly
annotated by the kth recommended tag.

• Tag-recall: Percentage of correctly recommended tags
among all tags annotated by the users.

• Tag-precision: Percentage of correctly recommended
tags among all tags recommended by the algorithm.

In our experiments, we return top 9 tags for evaluation.



5.2 CiteULike
For evaluation on scientific documents, we acquired the

tagging dataset from CiteULike for over two years from
November 15, 2004 to February 13, 2007. We mapped the
dataset to papers that are indexed in CiteSeer4 to extract
the metadata. Each entry of the CiteULike record contains
four fields: user name, tag, key (the paper ID in CiteSeer),
and creation date. Overall, there are 32,242 entries, with
9,623 distinct papers and 6,527 distinct tags (tag vocabu-
lary). The average number of tags per paper was 3.35. The
5 most tagged papers are listed in Table 1 respectively.

We report the results of 50% training and 50% test data
here due to space limitation5. The optimal number of clus-
ters K is 30, number of component M is 40, and the number
of word cluster L is 30.

Table 1 also lists the top user tags for each of the top 10
papers, as well as the top 9 tags recommended by our al-
gorithm. The bold fonts indicate an overlap. Generally, at
least one correct recommendation is made for each paper,
and the first tag recommended always matches one of the
user tags. In addition, although some recommended tags do
not match the user tags literally, most of them are seman-
tically relevant. e.g., “www” is relevant to “web”; “com-
munities” is often consisted in “social networks”; “page”
and “rank” together have the same meaning as “pagerank”.
In the best scenario, 7 of 9 recommended tags match with
the user tags for the paper “A Tutorial on Learning With
Bayesian Networks”, which has a Kendall τ rank of 0.78.

The comprehensive performance on CiteULike data set
is depicted in Figure 6. On average, the Kendall τ rank
is 0.24 for PMM, indicating a positive correspondence be-
tween the two rankings. The top-9 tag performance is shown
in (a), where our algorithm makes 67.2% correct recommen-
dation for the top-most(top-1) tag, for which SimFusion and
VS+IG are around 58.2% and 43.3%. As the number of tags
increases, the top-k performance gradually improves. The
accuracy of top 9 tags for PMM reaches 93.1%, indicating
that at least 1 of 9 tags recommended by our algorithm is
also annotated by the users of over 4,000 test papers. Fig-
ure 6 (b) shows the accuracy at different ranks. It is clear
that the top-most tags achieve the best accuracy (67.2%) for
PMM and the performance decreases as the rank of the tags
decreases. Finally, Figure 6 (c) shows the precision-recall
graph. Our method is clearly the winner. With the number
of tags increases from 1 to 9, tag-precision drops from 67.2%
to 43.5%, while tag-recall goes up from 10.2% to 55.6%.

On average, the histogram of the number of correctly-
labeled tags implies that 3.72 tags are correctly recommended.

5.3 Del.icio.us
Using the tagging data set from del.icio.us, we subscribed

to 20 popular tags, each of which is treated as a topic. For
these topics, we retrieved 22,656 URLs from March 3rd, 2007
to April 25, 2007. For each URL, we crawled del.icio.us to
obtain the most popular tags with their frequencies. We
also harvested the HTML content of each URL. We ended
up with 215,088 tags, of which 28,457 are distinct (tag vo-
cabulary), averaging 9.5 tags per URL. The total size of the
dataset is slightly over 2GB.

4http://citeseer.ist.psu.edu/oai.html
5We also tested our algorithm on different splitting ratios,
with similar results observed.

We sorted the data chronically and used the first half for
training, the rest for testing5. By filtering out stop words
and using mutual information to select the most informa-
tive words, we form a feature space with 83,205 words, con-
taining 11,300 samples. The sparseness of the training set
(number of zeros vs. dimensionality) is 92%.

Figure 7 shows the results for 11,356 test URLs, with a
Kendall τ value of 0.13 for PMM. Comparing with CiteU-
Like, the performance degrades for all metrics. Again, our
algorithm outperform the others significantly. The accuracy
of top-1 tag is around 48%, and degrades to 22% for the 9th
tag. However, the top 9 recommended tags together are still
able to overlap with 88.5% of the user-annotated tags.

We give two explanations for the degraded performance
on the web page tag recommendation task. First, we notice
that our algorithm usually fails when the content of a specific
URL contains little of the necessary information, i.e., words
in our case. As an example, for the topics “photography”
and “travel”, many pages only contain images and short
descriptions, making it hard for our model to determine the
proper components for a test sample.

Second, unlike structured scientific documents with con-
trolled vocabularies, the heterogeneous nature of web pages
not only results in varied length (word count) of the html
pages, but also the distribution of the tag vocabulary. In
fact, for PMM, the tag/doc ratio for the CiteULike data is
0.68 (6,527 unique tags vs. 9,623 papers), compared with
1.26 (28,457 unique tags vs. 22,656 URLs) for del.icio.us.
A previous study [11] has shown that the tag vocabulary
usually does not converge for a specific user, reflecting a
continual growth of interests. Thus, we believe that a large
tag vocabulary could possibly compromise the recommenda-
tion performance for unstructured web pages. On average,
2.91 correct tags are recommended for each test sample.

Figure 5 depicts the user tags as well as our recommended
tags that co-occurred with “ajax”. It can be observed that
the co-occurred tags in our model are consistent with those
annotated by the users.

5.4 Efficiency of Online Recommendation
To show that our model is capable of making real-time

tagging for large volumes of documents, we evaluate our
model in terms of the average tagging time for query doc-
uments. Different proportions of training documents (from
10% to 90 %) are tested.

Figure 8 and Table 2 present the performance of CiteU-
Like and del.icio.us data respectively6. Our approach ex-
hibits stable performance on both data sets with very small
variance. On average, only 1.08 seconds is needed for one
test document on CiteULike and 1.23 seconds for del.icio.us.
On the other hand, the average tagging time for SimFusion
and VS+IG is 6.4 and 16 seconds respectively, expected to
grow exponentially with the increase of the features.

The efficiency of our model can be explained by its linear
calculation. With the model determined, calculating the
membership of a new document within each class is readily
automated, requiring only multiplication in equation (17) of
the M components and L word clusters. Recall that M =
O(K) and L ≪ p with the process taking linear time to
complete. Moreover, by taking the log over both sides of
equation (17), the multiplication can be replaced by addition
operations, making it even more efficient.

6The experiment was performed on a 3.0GHZ sever.



Paper Name Tags Top User Tags Our Tags

The PageRank Citation Ranking: google, pagerank, search, search, web, rank,
Bringing Order to the Web 135 ranking, web, social-networks, mining, pagerank, page,
(Larry Page et al.) networks, socialnetworks, ir rank, www, ir
The Anatomy of a Large-Scale google, search, pagerank, search, web, engine,
Hypertextual Web Search Engine 94 web, engine, www, www, page, rank,
(Sergey Brin, Lawrence Page) web-search, ir, graphs ir, classification, mining
ReferralWeb: Combining Social folksonomy, collaboration, tagging, networks, network, adhoc,
Networks and Collaborative Filtering 88 social-networks, networks, social, mobile, mobilitymodel, filtering,
(Henry Kautz et al.) filtering, recommender, socialnetworks tagging, social, socialnetwork
A Tutorial on Learning With bayesian, networks, learning, bayesian, networks, learning,
Bayesian Networks 78 network, statistics, bayes, tutorial, network, bayes, machinelearning,
(David Heckerman) modeling, graphs, algorithms modeling, data, graphical
Maximizing the Spread of Influence social, influence, network, network, networks, social,
through a Social Network 73 socialnetworks, diffusion, socialnetworks, adhoc, models,
(David Kempe et al.) research, spread, networking machinelearning, algorithm, data

Table 1: Top 5 papers from CiteULike data in terms of popularity (number of times the paper being tagged).
The top 9 recommended tags are listed as “Our Tags”, ranked according to our node ranking algorithm.
Tags with bold font match one of the user-annotated tags.
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Figure 5: Tag co-occurrence of the del.icio.us data set shows the relationship between tags. (a) Top 9 most
co-occurred user tags with “ajax”, which appears 1,930 times. (b) Top 9 most co-occurred recommended
tags with “ajax”, which is suggested 1,325 times.
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Figure 8: Average tagging time of CiteULike data.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a learning framework for tag

recommendation for scientific and web documents. We pro-
posed a Poisson mixture model for efficient document classi-
fication. We also proposed a novel node ranking method as
well as several new metrics for evaluating the performance of
our framework. The proposed framework demonstrates its

% Train PMM SimFusion VS+IG
10 0.85 ± 0.7 4.3 ± 2.1 20.5 ± 11.2
30 0.90 ± 0.8 5.9 ± 2.8 45.2 ± 10.6
50 0.92 ± 0.6 6.7 ± 2.9 77.3 ± 10.7
70 1.33 ± 1.2 6.8 ± 2.9 108.0 ± 10.8
90 1.41 ± 1.4 7.8 ± 3.2 133.2 ± 9.5

Average 1.23 6.44 77.43

Table 2: Delicious Test Time (seconds).

potential in evaluations on two real-world tagging data sets,
indicating its capability of handling large-scale data sets in
real-time. Being runtime efficient, our proposed method can
recommend tags in one second on average.

Future work would be to examine the performance of our
algorithm for less popular tags/documents. A user study
could be done by assigning relevance scores to each tag (e.g.
0-3), and applying Normalized Discounted Cumulative Gain
(NDCG) to measure the performance. Of course it would
be interesting to apply this framework to other tagging rec-
ommendations.
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Figure 6: Performance of CiteULike data with 4,320 test documents. 9 tags are recommended for each
document. (a) Top-k: percentages of documents that are correctly annotated by at least one of the top kth
tags. (b) Exact-k: Percentages of documents that are correctly annotated by the kth tag. (c) Precision-Recall
graph shows the change of tag-precision and tag-recall with the number of recommended tags increases.
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Figure 7: Performance of the Del.icio.us data set with 11,300 training and 11,365 test html pages.
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